
Archived version from NCDOCKS Institutional Repository http://libres.uncg.edu/ir/asu/

Parametricity For Primitive Nested Types

By: Patricia Johann, Enrico Ghiorzi, and Daniel Jeffries

Abstract
This paper considers parametricity and its resulting free theorems for nested data types. Rather than representing
nested types via their Church encodings in a higher-kinded or dependently typed extension of System F, we adopt
a functional programming perspective and design a Hindley-Milner-style calculus with primitives for constructing
nested types directly as fixpoints. Our calculus can express all nested types appearing in the literature, including
truly nested types. At the term level, it supports primitive pattern matching, map functions, and fold combinators for
nested types. Our main contribution is the construction of a parametric model for our calculus. This is both delicate
and challenging: to ensure the existence of semantic fixpoints interpreting nested types, and thus to establish a
suitable Identity Extension Lemma for our calculus, our type system must explicitly track functoriality of types, and
co-continuity conditions on the functors interpreting them must be appropriately threaded throughout the model
construction. We prove that our model satisfies an appropriate Abstraction Theorem and verifies all standard
consequences of parametricity for primitive nested types.

Johann, P., Ghiorzi, E., & Jeffries, D. (2021). Parametricity for Primitive Nested Types. Proceedings, Foundations
of Software Science and Computation Structures 2021, pp. 324-343. NC Docks permission to re-print granted by
author(s).

Parametricity for Primitive Nested Types

Patricia JohannB, Enrico Ghiorzi , and Daniel Jeffries
Appalachian State University, Boone, NC, USA
{johannp,ghiorzie,jeffriesd}@appstate.edu

Abstract. This paper considers parametricity and its resulting free the-
orems for nested data types. Rather than representing nested types via
their Church encodings in a higher-kinded or dependently typed exten-
sion of System F, we adopt a functional programming perspective and
design a Hindley-Milner-style calculus with primitives for constructing
nested types directly as fixpoints. Our calculus can express all nested
types appearing in the literature, including truly nested types. At the
term level, it supports primitive pattern matching, map functions, and
fold combinators for nested types. Our main contribution is the construc-
tion of a parametric model for our calculus. This is both delicate and chal-
lenging: to ensure the existence of semantic fixpoints interpreting nested
types, and thus to establish a suitable Identity Extension Lemma for our
calculus, our type system must explicitly track functoriality of types, and
cocontinuity conditions on the functors interpreting them must be ap-
propriately threaded throughout the model construction. We prove that
our model satisfies an appropriate Abstraction Theorem and verifies all
standard consequences of parametricity for primitive nested types.

1 Introduction

Algebraic data types (ADTs), both built-in and user-defined, have long been at
the core of functional languages such as Haskell, ML, Agda, Epigram, and Idris.
ADTs, such as that of natural numbers, can be unindexed. But they can also be
indexed over other types. For example, the ADT of lists (here coded in Agda)

data List (A : Set) : Set where

nil : List A

cons : A→ List A→ List A

is indexed over its element type A. The instance of List at index A depends only
on itself, and so is independent of List B for any other index B. That is, List,
like all other ADTs, defines a family of inductive types, one for each index type.

Over time, there has been a notable trend toward data types whose non-
regular indexing can capture invariants and other sophisticated properties that
can be used for program verification and other applications. A simple example
of such a type is given by Bird and Meertens’ [4] prototypical nested type

data PTree (A : Set) : Set where

pleaf : A→ PTree A

pnode : PTree (A× A)→ PTree A

of perfect trees, which can be thought of as constraining lists to have lengths that
are powers of 2. The above code makes clear that perfect trees at index type A

are defined in terms of perfect trees at index type A× A. This is typical of nested
types, one type instance of which can depend on others, so that the entire family

http://orcid.org/0000-0001-5983-6230

2 P. Johann, E. Ghiorzi, and D. Jeffries

of types must actually be defined at once. A nested type thus defines not a family
of inductive types, but rather an inductive family of types. Nested types include
simple nested types, like perfect trees, none of whose recursive occurrences occur
below another type constructor; “deep” nested types [18], such as the nested type

data PForest (A : Set) : Set where

fempty : PForest A

fnode : A→ PTree (PForest A)→ PForest A

of perfect forests, whose recursive occurrences appear below type constructors
for other nested types; and truly nested types, such as the nested type

data Bush (A : Set) : Set where

bnil : Bush A

bcons : A→ Bush (Bush A)→ Bush A

of bushes, whose recursive occurrences appear below their own type constructors.
Relational parametricity encodes a powerful notion of type-uniformity, or

representation independence, for data types in polymorphic languages. It for-
malizes the intuition that a polymorphic program must act uniformly on all of
its possible type instantiations by requiring that every such program preserves
all relations between pairs of types at which it is instantiated. Parametricity was
originally put forth by Reynolds [24] for System F [11], the calculus at the core of
all polymorphic functional languages. It was later popularized as Wadler’s “the-
orems for free” [27], so called because it can deduce properties of programs in
such languages solely from their types, i.e., with no knowledge whatsoever of the
text of the programs involved. Most of Wadler’s free theorems are consequences
of naturality for polymorphic list-processing functions. However, parametricity
can also derive results that go beyond just naturality, such as correctness for
ADTs of the program optimization known as short cut fusion [10,14].

But what about nested types? Does parametricity still hold if such types
are added to polymorphic calculi? More practically, can we justifiably reason
type-independently about (functions over) nested types in functional languages?

Type-independent reasoning about ADTs in functional languages is usually
justified by first representing ADTs by their Church encodings, and then rea-
soning type-independently about these encodings. This is typically justified by
constructing a parametric model — i.e, a model in which polymorphic func-
tions preserve relations á la Reynolds — for a suitable fragment of System F,
demonstrating that an initial algebra exists for the positive type constructor cor-
responding to the functor underlying an ADT of interest, and showing that each
such initial algebra is suitably isomorphic to its corresponding Church encoding.
In fact, this isomorphism of initial algebras and their Church encodings is one
of the “litmus tests” for the goodness of a parametric model.

This approach works well for ADTs, which are always fixpoints of first-order
functors, and whose Church encodings, which involve quantification over only
type variables, are always expressible in System F. For example, List A is the
fixpoint of the first-order functor F X = 1 + A × X and has Church encoding
∀α. α → (A → α → α) → α. But despite Cardelli’s [7] claim that “virtually
any basic type of interest can be encoded within F2” — i.e., within System

Parametricity for Primitive Nested Types 3

F — non-ADT nested types cannot. Not even our prototypical nested type of
perfect trees has a Church encoding expressible in System F! Indeed, PTree A
cannot be represented as the fixpoint of any first-order functor. However, it can
be seen as the instance at index A of the fixpoint of the higher-order functor
H F A = (A → F A) → (F (A × A) → F A) → F A. It thus has Church
encoding ∀f. (∀α. α → fα) → (∀α. f(α × α) → fα) → ∀α. fα, which requires
quantification at the higher kind ∗ → ∗ for f . A similar situation obtains for
any (non-ADT) nested type. Unfortunately, higher-kinded quantification is not
available in System F, so if we want to reason type-independently about nested
types in a language based on it we have only two options: i) move to an extension
of System F, such as the higher-kinded calculus Fω or a dependent type theory,
and reason via their Church encodings in a known parametric model for that
extension, or ii) add nested types to System F as primitives — i.e., as primitive
type-level fixpoints — and construct a parametric model for the result.

Since the type systems of Fω and dependent type theories are designed to
extend System F with far more than non-ADT data types, it seems like seri-
ous overkill to pass to their parametric models to reason about nested types in
System F. Indeed, such calculi support fundamentally new features that add
complexity to their models that is entirely unnecessary for reasoning about
nested types. This paper therefore pursues the second option above. We first
design a Hindley-Milner-style calculus supporting primitive nested types, to-
gether with primitive types of natural transformations representing morphisms
between them. Our calculus can express all nested types appearing in the lit-
erature, including truly nested types. At the term-level, it supports primitive
pattern matching, map functions, and fold combinators for nested types.1 Our
main contribution is the construction of a parametric model for our calculus. This
is both delicate and challenging. To ensure the existence of semantic fixpoints
interpreting nested types, and thus to establish a suitable Identity Extension
Lemma, our type system must explicitly track functoriality of types, and co-
continuity conditions on the functors interpreting them must be appropriately
threaded throughout the model construction. Our model validates all standard
consequences of parametricity in the presence of primitive nested types, includ-
ing the isomorphism of primitive ADTs and their Church encodings, and cor-
rectness of short cut fusion for nested types. The relationship between naturality
and parametricity has long been of interest, and our inclusion of a primitive type
of natural transformations allows us to clearly delineate those consequences of
parametricity that follow from naturality, from those, such as short cut fusion
for nested types, that require the full power of parametricity.

1 We leave incorporating general term-level recursion to future work because, as
Pitts [23] reminds us, “it is hard to construct models of both impredicative poly-
morphism and fixpoint recursion”. In fact, as the development in this paper shows,
constructing a parametric model even for our predicative calculus with primitive
nested types — and even without term-level fixpoints — is already rather involved.
On the other hand, our calculus is strongly normalizing, so it perhaps edges us
toward the kind of provably total practical programming language proposed in [27].

4 P. Johann, E. Ghiorzi, and D. Jeffries

Structure of this Paper We introduce our calculus in Section 2. Its type sys-
tem is based on the level-2-truncation of the higher-kinded grammar from [17],
augmented with a primitive type of natural transformations. (Since [17] contains
no term calculus, the issue of parametricity could not even be raised there.) In
Section 3 we give set and relational interpretations of our types. Set interpre-
tations are possible precisely because our calculus is predicative — as ensured
by our primitive natural transformation types — and [17] guarantees that local
finite presentability of Set makes it suitable for interpreting nested types. As is
standard in categorical models, types are interpreted as functors from environ-
ments interpreting their type variable contexts to sets or relations, as appropri-
ate. To ensure that these functors satisfy the cocontinuity properties needed for
the semantic fixpoints interpreting nested types to exist, set environments must
map k-ary type constructor variables to appropriately cocontinuous k-ary func-
tors on sets, relation environments must map k-ary type constructor variables to
appropriately cocontinuous k-ary relation transformers, and these cocontinuity
conditions must be threaded through our type interpretations in such a way that
an Identity Extension Lemma (Theorem 1) can be proved. Properly propagating
the cocontinuity conditions requires considerable care, and Section 4, where it is
done, is (apart from tracking functoriality in the calculus so that it is actually
possible) where the bulk of the work in constructing our model lies.

In Section 5, we give set and relational interpretations for the terms of our
calculus. As usual in categorical models, terms are interpreted as natural trans-
formations from interpretations of their term contexts to interpretations of their
types, and these must cohere in what is essentially a fibred way. In Section 6.1
we prove a scheme deriving free theorems that are consequences of natural-
ity of polymorphic functions over nested types. This scheme is very general,
and is parameterized over both the data type and the type of the polymorphic
function at hand. It has, for example, analogues for nested types of Wadler’s
map-rearrangement free theorems as instances. In Section 6.2 we prove that our
model satisfies an Abstraction Theorem (Theorem 4), which we use to derive
other parametricity results that go beyond naturality. We conclude in Section 7.

Related Work There is a long line of work on categorical models of parametric-
ity for System F; see, e.g., [3,6,8,9,12,13,20,26]. To our knowledge, all such models
treat ADTs via their Church encodings, verifying in the just-constructed para-
metric model that each ADT is isomorphic to its encoding. This paper draws
on this rich tradition of categorical models of parametricity for System F, but
modifies them to treat nested types (and thus ADTs) as primitive data types.
The only other extensions we know of System F with primitive data types are
those in [19,21,22,23,27]. Wadler [27] treats full System F, and sketches para-
metricity for its extension with lists. Martin and Gibbons [21] outline a semantics
for a grammar of primitive nested types similar to that in [17], but treat only
polynomial nested types. Unfortunately, the model suggested in [21] is not en-
tirely correct (see [17]), and parametricity is nowhere mentioned. Matthes [19]
treats System F with non-polynomial ADTs and nested types, but focuses on
expressivity of generalized Mendler iteration for them. He gives no semantics.

Parametricity for Primitive Nested Types 5

In [23], Pitts adds list ADTs to full System F with a term-level fixpoint
primitive. Other ADTs are included in [22], but nested types are not express-
ible in either syntax. Pitts constructs parametric models for his calculi based on
operational, rather than categorical, semantics. A benefit of using operational se-
mantics to build parametric models is that it avoids needing to work in a suitable
metatheory to accommodate System F’s impredicativity. It is well-known that
there are no set-based parametric models of System F [25], so parametric models
for it and its extensions are often constructed in a syntactic metatheory such as
the impredicative Calculus of Inductive Constructions (iCIC). By adding primi-
tive nested types to a Hindley-Milner-style calculus and working in a categorical
setting we side-step such metatheoretic distractions. It is important to note that
different consequences of parametricity are available in syntactic and semantic
metatheories. Consequences of parametricity are possible for both closed and
open System F terms in a syntactic metatheory — although not all that can be
formulated can be always proved; see, e.g., the end of Section 7 of [4]. By con-
trast, in a categorical metatheory consequences of parametricity are expressible
only for closed terms. For this reason, validating the standard consequences of
parametricity for closed terms is — going all the way back to Reynolds [24] —
all that is required for a model of parametricity to be considered good.

Atkey [2] treats parametricity for arbitrary higher kinds, constructing a para-
metric model for System Fω within iCIC, rather than in a semantic category.
His construction is in some ways similar to ours, but he represents (now higher-
kinded) data types using Church encodings rather than as primitives. Moreover,
the fmap functions associated to Atkey’s functors must be given, presumably by
the programmer, together with their underlying type constructors. This absolves
him of imposing cocontinuity conditions on his model to ensure that fixpoints of
his functors exist, but, unfortunately, he does not indicate which type construc-
tors support fmap functions. We suspect explicitly spelling out which types can
be interpreted as strictly positive functors would result in a full higher-kinded
extension of a calculus akin to that presented here.

2 The Calculus

2.1 Types

For each k ≥ 0, we assume countable sets Tk of type constructor variables of arity
k (i.e., of kind ∗ → ...→ ∗ → ∗, with k arrows and k+1 ∗s in this sequence) and
Fk of functorial variables of arity k, all mutually disjoint. The sets of all type
constructor variables and functorial variables are T =

⋃
k≥0 Tk and F =

⋃
k≥0 Fk,

respectively, and a type variable is any element of T∪F. We use lower case Greek
letters for type variables, writing φk to indicate that φ ∈ Tk ∪ Fk, and omitting
the arity indicator k when convenient. Letters from the beginning of the alphabet
denote type variables of arity 0, i.e., elements of T0 ∪F0. We write φ for either a
set {φ1, ..., φn} of type constructor variables or a set of functorial variables when
the cardinality n of the set is unimportant or clear from context. If V is a set
of type variables we write V, φ for V ∪ φ when V ∩ φ = ∅. We omit the vector
notation for a singleton set, thus writing φ, instead of φ, for {φ}.

6 P. Johann, E. Ghiorzi, and D. Jeffries

If Γ is a finite subset of T, Φ is a finite subset of F, α is a finite subset of F0

disjoint from Φ, and φk ∈ Fk \Φ, then the set F of well-formed types is given in
Definition 1. The notation there entails that type application φF1...Fk is allowed
only when φ is a type variable of arity k, or φ is a subexpression of the form
µψk.λα1...αk.F

′. Moreover, if φ has arity k then φ must be applied to exactly
k arguments. Accordingly, an overbar indicates a sequence of subexpressions
whose length matches the arity of the type applied to it. Requiring that types
are always in such η-long normal form avoids having to consider β-conversion of
types. In a subexpression NatαF G, the Nat operator binds all occurrences of the
variables in α in F and G; intuitively, NatαF G represents the type of a natural
transformation in α from the functor F to the functor G. In a subexpression
µφk.λα.F , the µ operator binds all occurrences of the variable φ, and the λ
operator binds all occurrences of the variables in α, in the body F .

A type constructor, or non-functorial, context is a finite set Γ of type con-
structor variables, and a functorial context is a finite set Φ of functorial variables.
In Definition 1, a judgment of the form Γ ;Φ ` F indicates that the type F is
intended to be functorial in the variables in Φ but not necessarily in those in Γ .

Definition 1. The formation rules for the set F of (well-formed) types are

Γ ;Φ ` 0 Γ ;Φ ` 1
Γ ;Φ ` F Γ ;Φ ` G

Γ ;Φ ` F +G

Γ ;Φ ` F Γ ;Φ ` G
Γ ;Φ ` F ×G

Γ ;α0 ` F Γ ;α0 ` G

Γ ; ∅ ` Natα
0

F G

φk ∈ Γ ∪ Φ Γ ;Φ ` F
Γ ;Φ ` φkF

Γ ;α0, φk ` F Γ ;Φ ` G
Γ ;Φ ` (µφk.λα0. F)G

We write ` F for ∅; ∅ ` F . Definition 1 ensures that the expected weakening
rules for well-formed types hold (but weakening does not change the contexts
in which types can be formed). If Γ ; ∅ ` F and Γ ; ∅ ` G, then our rules allow

formation of Γ ; ∅ ` Nat∅F G, which represents the arrow type Γ ` F → G in
our calculus. The type Γ ; ∅ ` Natα 1F represents the ∀-type Γ ; ∅ ` ∀α.F . Some
System F types, such as ∀α. (α→ α)→ α, are not representable in our calculus.

Since the body F of a type (µφ.λα.F)G can only be functorial in φ and the
variables in α, the representation of List α as the ADT µβ. 1 + α× β cannot be
functorial in α. By contrast, if List α is represented as the nested type (µφ.λβ. 1+
β×φβ)α then we can choose α to be a functorial variable or not when forming the
type. This observation holds for other ADTs as well; for example, if Tree αγ =
µβ.α+ β × γ × β, then α, γ; ∅ ` Tree αγ is well-formed, but ∅;α, γ ` Tree αγ is
not. It also applies to some non-ADT types, such as GRose φα = µβ.1+α×φβ,
in which φ and α must both be non-functorial variables. It is in fact possible
to allow “extra” 0-ary functorial variables in the body of µ-types (functorial
variables of higher arity are the real problem). This would allow the first-order
representations of ADTs to be functorial, but doing so requires some changes to
the formation rule for µ-types, as well as the delicate threading of some additional

Parametricity for Primitive Nested Types 7

conditions throughout our model construction. But since we can always use an
ADT’s (semantically equivalent) second-order representation when functoriality
is needed, disallowing such “extra” variables does not negatively impact the
expressivity of our calculus. We therefore pursue the simpler syntax here.

Definition 1 allows well-formed types to be functorial in no variables. Functo-
rial variables can also be demoted to non-functorial status: if F [φ :== ψ] is the
textual replacement of φ in F , then Γ, ψk;Φ ` F [φk :== ψk] is derivable when-
ever Γ ;Φ, φk ` F is. In addition to textual replacement, we also have substitution
for types. If Γ ;Φ ` F is a type, if Γ and Φ contain only type variables of arity 0,
and if k = 0 for every occurrence of φk bound by µ in F , then we say that F is
first-order; otherwise we say that F is second-order. Substitution for first-order
types is the usual capture-avoiding textual substitution. We write F [α := σ]
for the result of substituting σ for α in F , and F [α1 := F1, ..., αk := Fk], or
F [α := F] when convenient, for F [α1 := F1][α2 := F2, ..., αk := Fk]. The opera-
tion (·)[φ :=α F] of second-order type substitution along α is defined by induction
on types exactly as expected. The only interesting clause is that for type appli-
cation, which defines (ψG)[φ :=α F] to be F [α := G[φ :=α F]] if ψ = φ and
G[φ :=α F] otherwise. Of course, (·)[φ0 :=∅ F] coincides with first-order substi-
tution. We omit α when convenient, but note that it is not correct to substitute
along non-functorial variables. It is not hard to see that if Γ ;Φ, φk ` H and
Γ ;Φ, α ` F with |α| = k, then Γ ;Φ ` H[φ :=α F]. Similarly, if Γ, φk;Φ ` H, and

if Γ ;ψ, α ` F with |α| = k and Φ∩ψ = ∅, then Γ, ψ
′
;Φ ` H[φ :=α F [ψ :== ψ′]].

2.2 Terms

Assume an infinite set V of term variables disjoint from T and F. If Γ is a type
constructor context and Φ is a functorial context, then a term context for Γ and
Φ is a finite set of bindings of the form x : F , where x ∈ V and Γ ;Φ ` F . We
adopt the above conventions for disjoint unions and vectors in term contexts. If ∆
is a term context for Γ and Φ then the formation rules for the set of well-formed
terms over ∆ are given in Figure 1. An expression Lαx.t binds all occurrences of
the type variables in α in the types of x and t, as well as all occurrences of x in t.
In the rule for tKs there is one functorial expression in K for every variable in α.

In the rule for mapF,GH there is one functorial expression in F and one functorial
expression in G for each variable in φ. Moreover, for each φk in φ the number of
variables in β in the judgments for functorial expresssions in F and G is k. In
the rules for inH and foldFH , the variables in β are fresh with respect to H, and
there is one β for every α. Substitution for terms is the obvious extension of the
usual capture-avoiding textual substitution, and weakening is respected.

The “extra” functorial variables in γ in the rules for mapF,GH (i.e., those
variables not affected by the substitution of φ) allow us to map polymorphic
functions over nested types. Suppose, for example, that we want to map the
polymorphic function flatten : Natβ(PTree β) (List β) over lists. The map term
for this is typeable as follows:

Γ ;α, γ ` List α Γ ; γ ` PTree γ Γ ; γ ` List γ

Γ ; ∅ | ∅ ` mapPTree γ,List γ
List α : Nat∅(Natγ(PTree γ) (List γ)) (Natγ (List (PTree γ)) (List (List γ)))

8 P. Johann, E. Ghiorzi, and D. Jeffries

Γ ;Φ ` F
Γ ;Φ |∆,x : F ` x : F

Γ ;Φ |∆ ` t : 0 Γ ;Φ ` F
Γ ;Φ |∆ ` ⊥F t : F Γ ;Φ |∆ ` > : 1

Γ ;Φ |∆ ` s : F

Γ ;Φ |∆ ` inL s : F +G

Γ ;Φ |∆ ` t : G

Γ ;Φ |∆ ` inR t : F +G

Γ ;Φ ` F,G Γ ;Φ |∆ ` t : F +G Γ ;Φ |∆,x : F ` l : K Γ ;Φ |∆, y : G ` r : K

Γ ;Φ | ∆ ` case t of {x 7→ l; y 7→ r} : K

Γ ;Φ |∆ ` s : F Γ ;Φ |∆ ` t : G

Γ ;Φ |∆ ` (s, t) : F ×G
Γ ;Φ |∆ ` t : F ×G
Γ ;Φ |∆ ` π1t : F

Γ ;Φ |∆ ` t : F ×G
Γ ;Φ |∆ ` π2t : G

Γ ;α ` F Γ ;α ` G Γ ;α |∆,x : F ` t : G

Γ ; ∅ |∆ ` Lαx.t : Natα F G

Γ ;Φ ` K Γ ; ∅ |∆ ` t : Natα F G Γ ;Φ |∆ ` s : F [α := K]

Γ ;Φ |∆ ` tKs : G[α := K]

Γ ;φ, γ ` H Γ ;β, γ ` F Γ ;β, γ ` G

Γ ; ∅ | ∅ ` mapF,GH : Nat∅ (Natβ,γ F G) (Natγ H[φ :=β F] H[φ :=β G])

Γ ;φ, α ` H

Γ ; ∅ | ∅ ` inH : NatβH[φ :=β (µφ.λα.H)β][α := β] (µφ.λα.H)β

Γ ;φ, α ` H Γ ;β ` F

Γ ; ∅ | ∅ ` foldFH : Nat∅ (Natβ H[φ :=β F][α := β]F) (Natβ (µφ.λα.H)β F)

Fig. 1. Well-formed terms

However, this derivation would not possible without the “extra” variable γ.

Our calculus is expressive enough to define, e.g., a function reversePTree :
Natα (PTree α)(PTree α) that reverses the order of the leaves in a perfect tree.
It maps the perfect tree ((1, 2), (3, 4)) to ((4, 3), (2, 1)). Unfortunately, we can-
not define recursive functions — such as a concatenation function for perfect
trees or a zip function for bushes — that take as inputs a nested type and an
argument of another type, both of which are parameterized over the same vari-
able. The fundamental issue is that recursion is expressible only via fold, which
produces natural transformations in some variables α from µ-types to other
functors F . The restrictions on Nat-types entail that F cannot itself be a Nat-
type containing α, so, e.g., Natα (PTree α)(Nat∅ (PTree α)(PTree (α×α))) is not
well-typed. Uncurrying gives Natα (PTree α×PTree α)(PTree (α×α)), which is
well-typed, but fold cannot produce a term of this type because PTree α×PTree α
is not a µ-type. Our calculus can, however, express types of recursive functions
that take multiple nested types as arguments, provided they are parameterized
over disjoint sets of type variables and the return type of the function is pa-
rameterized over only the variables occurring in the type of its final argument.
Even for ADTs there is a difference between which folds over them we can type
when they are viewed as ADTs (i.e., as fixpoints of first-order functors) versus
as proper nested types (i.e., as fixpoints of higher-order functors). This is be-
cause, in the return type of fold, the arguments of the µ-type must be variables

Parametricity for Primitive Nested Types 9

bound by Nat. For ADTs, the µ-type takes no arguments, making it possible
to write recursive functions, such as a concatenation function for lists of type
α; ∅ ` Nat∅ (µβ.1+α×β) (Nat∅(µβ.1+α×β) (µβ.1+α×β)). This is not possible
for nested types — even when they are semantically equivalent to ADTs.

Interestingly, even some recursive functions of a single proper nested type —
e.g., a reverse function for bushes that is a true involution — cannot be expressed
as folds because the algebra arguments needed to define them are again recursive
functions with types of the same problematic form as the type of, e.g., a zip
function for perfect trees. Expressivity of folds for nested types has long been
a vexing issue, and this is naturally inherited by our calculus. Adding more
expressive recursion combinators — e.g., generalized folds or Mendler iterators
— could help, but since this is orthogonal to the issue of parametricity in the
presence of primitive nested types we do not consider it further here.

3 Interpreting Types

We denote the category of sets and functions by Set. The category Rel has as
objects triples (A,B,R), where R is a relation between sets A and B. It has
as morphisms from (A,B,R) to (A′, B′, R′) pairs (f : A → A′, g : B → B′)
of morphisms in Set such that (fa, g b) ∈ R′ if (a, b) ∈ R. We may write R :
Rel(A,B) for (A,B,R). If R : Rel(A,B) we write π1R and π2R for the domain A
of R and the codomain B of R, respectively, and assume π1 and π2 are surjective.
We write EqA = (A,A, {(x, x) | x ∈ A}) for the equality relation on the set A.

The key idea underlying Reynolds’ parametricity is to give each type F (α)
with one free variable α a set interpretation F0 taking sets to sets and a re-
lational interpretation F1 taking relations R : Rel(A,B) to relations F1(R) :
Rel(F0(A), F0(B)), and to interpret each term t(α, x) : F (α) with one free term
variable x : G(α) as a map t0 associating to each set A a function t0(A) :
G0(A) → F0(A). These interpretations are given inductively on the structures
of F and t in such a way that they imply two fundamental theorems. The
first is an Identity Extension Lemma, which states that F1(EqA) = EqF0(A),
and is the essential property that makes a model relationally parametric rather
than just induced by a logical relation. The second is an Abstraction Theorem,
which states that, for any R : Rel(A,B), (t0(A), t0(B)) is a morphism in Rel
from (G0(A), G0(B), G1(R)) to (F0(A), F0(B), F1(R)). The Identity Extension
Lemma is similar to the Abstraction Theorem except that it holds for all el-
ements of a type’s interpretation, not just those that interpret terms. Similar
theorems are required for types and terms with any number of free variables.

The key to proving our Identity Extension Lemma is a familiar “cutting
down” of the interpretations of universally quantified types to include only the
“parametric” elements; the relevant types here are Nat types. This requires that
the set interpretations of types (Section 3.1) are defined simultaneously with
their relational interpretations (Section 3.2). While set interpretations are rel-
atively straightforward, relational interpretations are less so because of the co-
continuity conditions needed to know they are well-defined. We develop these
conditions in Sections 3.1 and 3.2. This separates our set and relational interpre-
tations in space, but has no other impact on the mutually inductive definitions.

10 P. Johann, E. Ghiorzi, and D. Jeffries

JΓ ;Φ ` 0KSetρ = 0

JΓ ;Φ ` 1KSetρ = 1

JΓ ; ∅ ` Natα F GKSetρ = {η : λA. JΓ ;α ` F KSetρ[α := A]⇒ λA. JΓ ;α ` GKSetρ[α := A]

| ∀A,B : Set.∀R : Rel(A,B).

(ηA, ηB) : JΓ ;α ` F KRelEqρ[α := R]→ JΓ ;α ` GKRelEqρ[α := R]}

JΓ ;Φ ` φF KSetρ = (ρφ) JΓ ;Φ ` F KSetρ

JΓ ;Φ ` F +GKSetρ = JΓ ;Φ ` F KSetρ+ JΓ ;Φ ` GKSetρ

JΓ ;Φ ` F ×GKSetρ = JΓ ;Φ ` F KSetρ× JΓ ;Φ ` GKSetρ

JΓ ;Φ ` (µφ.λα.H)GKSetρ = (µT Set
H,ρ)JΓ ;Φ ` GKSetρ

where T Set
H,ρ F = λA.JΓ ;φ, α ` HKSetρ[φ := F][α := A]

and T Set
H,ρ η = λA.JΓ ;φ, α ` HKSetidρ[φ := η][α := idA]

Fig. 2. Set interpretation

3.1 Interpreting Types as Sets

We interpret types in our calculus as ω-cocontinuous functors on locally finitely
presentable categories [1]. Since functor categories of locally finitely presentable
categories are again locally finitely presentable, this ensures that the fixpoints
interpreting µ-types in Set and Rel exist, and thus that both the set and rela-
tional interpretations of all of the types in Definition 1 are well-defined [17]. To
bootstrap this process, we interpret type variables as ω-cocontinuous functors.
If C and D are locally finitely presentable categories, we write [C,D] for the
category of ω-cocontinuous functors from C to D.

A set environment maps each type variable in Tk ∪ Fk to an element of
[Setk, Set]. A morphism f : ρ→ ρ′ for set environments ρ and ρ′ with ρ|T = ρ′|T
maps each type constructor variable ψk ∈ T to the identity natural transfor-
mation on ρψk = ρ′ψk and each functorial variable φk ∈ F to a natural trans-
formation from the k-ary functor ρφk on Set to the k-ary functor ρ′φk on Set.
Composition of morphisms on set environments is componentwise, with the iden-
tity morphism mapping each one to itself. This gives a category of set environ-
ments and morphisms between them, denoted SetEnv. We identify a functor in
[Set0, Set] with its value on ∗, and consider a set environment to map a type
variable of arity 0 to a set. If α = {α1, ..., αk} and A = {A1, ..., Ak}, then we
write ρ[α := A] for the set environment ρ′ such that ρ′αi = Ai for i = 1, ..., k
and ρ′α = ρα if α 6∈ {α1, ..., αk}. If ρ ∈ SetEnv we write Eqρ for the relation en-
vironment (see Section 3) such that Eqρv = Eqρv for every type variable v. The

set interpretation J·KSet : F → [SetEnv, Set] is defined in Figure 2. The relational
interpretations in the second clause of Figure 2 are given in full in Figure 3.

If ρ ∈ SetEnv and ` F we write J` F KSet for J` F KSetρ since the environment
is immaterial. The third clause of Figure 2 does indeed define a set: local finite
presentability of Set and ω-cocontinuity of JΓ ;α ` F KSetρ ensure that the set of
natural transformations {η : JΓ ;α ` F KSetρ ⇒ JΓ ;α ` GKSetρ} (which contains

Parametricity for Primitive Nested Types 11

JΓ ; ∅ ` Natα F GKSetρ) is a subset of
{

(JΓ ;α ` GKSetρ[α := S])(JΓ ;α`F KSetρ[α:=S])∣∣ S = (S1, ..., S|α|), and Si is a finite set for i = 1, ..., |α|
}

. There are count-

ably many tuples S, each giving a morphism from JΓ ;α ` F KSetρ[α := S] to
JΓ ;α ` GKSetρ[α := S], and only Set-many such morphisms since Set is locally
small. In addition, JΓ ; ∅ ` NatαF GKSet is ω-cocontinuous since it is constant on
ω-directed sets. Interpretations of Nat types ensure that JΓ ` F → GKSet and
JΓ ` ∀α.F KSet are as expected in parametric models.

To make sense of the last clause in Figure 2, we need to know that, for each
ρ ∈ SetEnv, T Set

H,ρ is an ω-cocontinuous endofunctor on [Setk, Set], and thus ad-

mits a fixpoint. Since T Set
H,ρ is defined in terms of JΓ ;φ, α ` HKSet, interpretations

of types must be such functors, which entails that the actions of set interpre-
tations of types on objects and on morphisms in SetEnv are intertwined. We
know from [17] that, for every Γ ;α ` G, JΓ ;α ` GKSet is actually in [Setk, Set]
where k = |α|, so that, for each JΓ ;φk, α ` HKSet, the corresponding operator
T Set
H can be extended to a functor from SetEnv to [[Setk, Set], [Setk, Set]]. The

action of T Set
H on an object ρ ∈ SetEnv is given by the higher-order functor T Set

H,ρ,

whose actions on objects (functors in [Setk, Set]) and morphisms between them
are given in Figure 2. Its action on a morphism f : ρ → ρ′ is the higher-order
natural transformation T Set

H,f : T Set
H,ρ → T Set

H,ρ′ whose action on F : [Setk, Set] is

the natural transformation T Set
H,f F : T Set

H,ρ F → T Set
H,ρ′ F whose component at A

is (T Set
H,f F)A = JΓ ;φ, α ` HKSetf [φ := idF][α := idA]. The next definition uses

T Set
H to define the functorial action of set interpretation.

Definition 2. The action of JΓ ;Φ ` F KSet on f : ρ→ ρ′ in SetEnv is given by:

– JΓ ;Φ ` 0KSetf = id0

– JΓ ;Φ ` 1KSetf = id1

– JΓ ; ∅ ` Natα F GKSetf = id JΓ ;∅`Natα F GKSetρ

– JΓ ;Φ ` φF KSetf : JΓ ;Φ ` φF KSetρ→ JΓ ;Φ ` φF KSetρ′ = (ρφ)JΓ ;Φ ` F KSetρ→
(ρ′φ)JΓ ;Φ ` F KSetρ′ is defined by JΓ ;Φ ` φF KSetf = (fφ)JΓ ;Φ`F KSetρ′ ◦ (ρφ)JΓ ;Φ ` F KSetf =

(ρ′φ)JΓ ;Φ ` F KSetf ◦ (fφ)JΓ ;Φ`F KSetρ. The latter equality holds because ρφ

and ρ′φ are functors and fφ : ρφ→ ρ′φ is a natural transformation.
– JΓ ;Φ ` F +GKSetf is defined by JΓ ;Φ ` F +GKSetf(inL x) = inL (JΓ ;Φ ` F KSetfx)

and JΓ ;Φ ` F +GKSetf(inR y) = inR (JΓ ;Φ ` GKSetfy)
– JΓ ;Φ ` F ×GKSetf = JΓ ;Φ ` F KSetf × JΓ ;Φ ` GKSetf
– JΓ ;Φ ` (µφ.λα.H)GKSetf : JΓ ;Φ ` (µφ.λα.H)GKSetρ→ JΓ ;Φ ` (µφ.λα.H)GKSetρ′ =

(µT Set
H,ρ)JΓ ;Φ ` GKSetρ→ (µT Set

H,ρ′)JΓ ;Φ ` GKSetρ′ is defined by (µT Set
H,f)JΓ ;Φ ` GKSetρ′◦

(µT Set
H,ρ)JΓ ;Φ ` GKSetf = (µT Set

H,ρ′)JΓ ;Φ ` GKSetf ◦ (µT Set
H,f)JΓ ;Φ ` GKSetρ.

The latter equality holds because µT Set
H,ρ and µT Set

H,ρ′ are functors and µT Set
H,f :

µT Set
H,ρ → µT Set

H,ρ′ is a natural transformation.

3.2 Interpreting Types as Relations

A k-ary relation transformer F is a triple (F 1, F 2, F ∗), where F 1, F 2 : [Setk, Set]
and F ∗ : [Relk,Rel] are functors, if Ri : Rel(Ai, Bi) for i = 1, ..., k then F ∗R :

12 P. Johann, E. Ghiorzi, and D. Jeffries

Rel(F 1A,F 2B), and if (αi, βi) ∈ HomRel(Ri, Si) for i = 1, ..., k, then F ∗(α, β) =
(F 1α, F 2β). We define FR to be F ∗R and F (α, β) to be F ∗(α, β). The last clause
above expands to: if (a, b) ∈ R implies (αa, β b) ∈ S then (c, d) ∈ F ∗R implies
(F 1α c, F 2β d) ∈ F ∗S. We identify a 0-ary relation transformer (A,B,R) with
R : Rel(A,B), and write π1F for F 1 and π2F for F 2. Below we extend these
conventions to relation environments in the obvious ways.

The category RTk of k-ary relation transformers is given by the follow-
ing data: an object of RTk is a k-ary relation transformer; a morphism δ :
(G1, G2, G∗)→ (H1, H2, H∗) in RTk is a pair of natural transformations (δ1, δ2)
where δ1 : G1 → H1, δ2 : G2 → H2 such that, for all R : Rel(A,B), if (x, y) ∈
G∗R then (δ1

A
x, δ2

B
y) ∈ H∗R; and identity morphisms and composition are in-

herited from the category of functors on Set. An endofunctor H on RTk is a triple
H = (H1, H2, H∗), where H1 and H2 are functors from [Setk, Set] to [Setk, Set];
H∗ is a functor from RTk to [Relk,Rel]; for all R : Rel(A,B), π1((H∗(δ1, δ2))R) =
(H1δ1)A and π2((H∗(δ1, δ2))R) = (H2δ2)B ; the action of H on objects is given
by H (F 1, F 2, F ∗) = (H1F 1, H2F 2, H∗(F 1, F 2, F ∗)); and the action of H on
morphisms is given by H (δ1, δ2) = (H1δ1, H2δ2) for (δ1, δ2) : (F 1, F 2, F ∗) →
(G1, G2, G∗). Since applying an endofunctor H to k-ary relation transform-
ers and morphisms between them must give k-ary relation transformers and
morphisms between them, this definition implicitly requires the following three
conditions to hold: i) H∗(F 1, F 2, F ∗)R : Rel(H1F 1A,H2F 2B) whenever R1 :
Rel(A1, B1), ..., Rk : Rel(Ak, Bk); ii) H∗(F 1, F 2, F ∗) (α, β) = (H1F 1α,H2F 2β)
whenever (α1, β1) ∈ HomRel(R1, S1), ..., (αk, βk) ∈ HomRel(Rk, Sk); and iii) (δ1, δ2) :
(F 1, F 2, F ∗) → (G1, G2, G∗) and R1 : Rel(A1, B1), ..., Rk : Rel(Ak, Bk), then
((H1δ1)Ax, (H

2δ2)By) ∈ H∗(G1, G2, G∗)R whenever (x, y) ∈ H∗(F 1, F 2, F ∗)R.
Note, however, that this last condition is automatically satisfied because it is
implied by the third condition on functors on relation transformers.

If H and K are endofunctors on RTk, then a natural transformation σ :
H → K is a pair σ = (σ1, σ2), where σ1 : H1 → K1 and σ2 : H2 → K2 are
natural transformations between endofunctors on [Setk, Set] and the component
of σ at F ∈ RTk is given by σF = (σ1

F 1 , σ2
F 2). This definition entails that σiF i is

natural in F i : [Setk, Set], and, for every F , both (σ1
F 1)A and (σ2

F 2)A are natural

in A. Moreover, since the results of applying σ to k-ary relation transformers
must be morphisms of k-ary relation transformers, it implicitly requires that
(σF)R = ((σ1

F 1)A, (σ
2
F 2)B) is a morphism in Rel for any k-tuple of relations

R : Rel(A,B), i.e., that if (x, y) ∈ H∗FR, then ((σ1
F 1)Ax, (σ

2
F 2)By) ∈ K∗FR.

Critically, we can compute ω-directed colimits in RTk. Indeed, if D is an
ω-directed set then lim−→d∈D

(F 1
d , F

2
d , F

∗
d) = (lim−→d∈D

F 1
d , lim−→d∈D

F 2
d , lim−→d∈D

F ∗d). We

define an endofunctor T = (T 1, T 2, T ∗) on RTk to be ω-cocontinuous if T 1 and
T 2 are ω-cocontinuous endofunctors on [Setk, Set] and T ∗ is an ω-cocontinuous
functor from RTk to [Relk,Rel], i.e., is in [RTk, [Rel

k,Rel]]. Now, for any k, any
A : Set, and any R : Rel(A,B), let KSet

A be the constantly A-valued functor from

Setk to Set and KRel
R be the constantly R-valued functor from Relk to Rel. Also

let 0 denote the initial object of either Set or Rel, as appropriate. Observing
that, for every k, KSet

0 is initial in [Setk, Set], and KRel
0 is initial in [Relk,Rel],

Parametricity for Primitive Nested Types 13

we have that, for each k, K0 = (KSet
0 ,KSet

0 ,KRel
0) is initial in RTk. Thus, if

T = (T 1, T 2, T ∗) : RTk → RTk is an endofunctor on RTk we can define the
relation transformer µT to be lim−→n∈N

TnK0 = (µT 1, µT 2, lim−→n∈N
(TnK0)∗). If

T : [RTk, RTk] then µT is a fixpoint for T , i.e., µT ∼= T (µT). The isomorphism
is given by (in1, in2) : T (µT) → µT and (in−11 , in−12) : µT → T (µT) in RTk.
The latter is always a morphism in RTk, but the former need not be if T is not
ω-cocontinuous. Since µT ’s third component is the colimit in [Relk,Rel] of third
components of relation transformers, rather than a fixpoint of an endofunctor on
[Relk,Rel], there is an asymmetry between µT ’s first two and third components.

A relation environment maps each type variable in Tk∪Fk to a k-ary relation
transformer. A morphism f : ρ→ ρ′ between relation environments ρ and ρ′ with
ρ|T = ρ′|T maps each ψk ∈ T to the identity morphism on ρψk = ρ′ψk and each
φk ∈ F to a morphism from the k-ary relation transformer ρφ to the k-ary
relation transformer ρ′φ. Composition of morphisms on relation environments is
componentwise, with the identity morphism mapping each to itself; this gives a
category RelEnv of relation environments and their morphisms. We identify a 0-
ary relation transformer with its codomain, and consider a relation environment
to map a type variable of arity 0 to a relation. We write ρ[α := R] for the
relation environment ρ′ such that ρ′αi = Ri for i = 1, ..., k and ρ′α = ρα if
α 6∈ {α1, ..., αk}. If ρ ∈ RelEnv we write π1ρ and π2ρ for the set environments
mapping each type variable φ to the functors (ρφ)1 and (ρφ)2, respectively.

For each k, an ω-cocontinuous functor H : [RelEnv, RTk] is a triple H =
(H1, H2, H∗), where H1, H2 : [SetEnv, [Setk, Set]]; H∗ : [RelEnv, [Relk,Rel]]; for
all R : Rel(A,B) and morphisms f in RelEnv, π1(H∗f R) = H1(π1f)A and
π2(H∗f R) = H2(π2f)B; the action of H on ρ in RelEnv is given by Hρ =
(H1(π1ρ), H2(π2ρ), H∗ρ); and the action of H on morphisms f : ρ → ρ′ in
RelEnv is given by Hf = (H1(π1f), H2(π2f)). The last two points above give:
i) if Ri : Rel(Ai, Bi) for i = 1, ..., k then H∗ρR : Rel(H1(π1ρ)A,H2(π2ρ)B); ii) if
(αi, βi) ∈ HomRel(Ri, Si) for i = 1, ..., k thenH∗ρ (α, β) = (H1(π1ρ)α,H2(π2ρ)β);
and iii) if f : ρ → ρ′ and Ri : Rel(Ai, Bi) for i = 1, ..., k, then if (x, y) ∈ H∗ρR
then (H1(π1f)Ax,H2(π2f)B y) ∈ H∗ρ′R.

Computation of ω-directed colimits in RTk extends componentwise to colim-
its in RelEnv. Similarly, ω-cocontinuity for endofunctors on RTk extends to func-
tors from RelEnv to RTk. Our relational interpretation J·KRel : F → [RelEnv,Rel]
is given in Figure 3. It ensures that JΓ ` F → GKRel and JΓ ` ∀α.F KRel are as
expected. As for set interpretations, JΓ ; ∅ ` NatαF GKRel is ω-cocontinuous be-
cause it is constant on ω-directed sets. If ρ ∈ RelEnv we write J` F KRel for
J` F KRelρ. For the last clause in Figure 3 to be well-defined we need TH,ρ to be
an ω-cocontinuous endofunctor on RT , so that it admits a fixpoint. Since TH,ρ is
defined in terms of JΓ ;φk, α ` HKRel, this means that relational interpretations
of types must be ω-cocontinuous functors from RelEnv to RT0, which in turn
entails that the actions of relational interpretations of types on objects and on
morphisms in RelEnv are intertwined. We know from [17] that, for every Γ ;α ` F ,
JΓ ;α ` F KRel is actually in [Relk,Rel] where k = |α|. We first define the actions
of each of these functors on morphisms between relation environments, and then

14 P. Johann, E. Ghiorzi, and D. Jeffries

JΓ ;Φ ` 0KRelρ = 0

JΓ ;Φ ` 1KRelρ = 1

JΓ ; ∅ ` Natα F GKRelρ = {η : λR. JΓ ;α ` F KRelρ[α := R]⇒ λR. JΓ ;α ` GKRelρ[α := R]}

= {(t, t′) ∈ JΓ ; ∅ ` Natα F GKSet(π1ρ)× JΓ ; ∅ ` Natα F GKSet(π2ρ) |
∀R1 : Rel(A1, B1) ... Rk : Rel(Ak, Bk).

(tA, t
′
B) ∈ (JΓ ;α ` GKRelρ[α := R])JΓ ;α`F KRelρ[α:=R]}

JΓ ;Φ ` φF KRelρ = (ρφ)JΓ ;Φ ` F KRelρ

JΓ ;Φ ` F +GKRelρ = JΓ ;Φ ` F KRelρ+ JΓ ;Φ ` GKRelρ

JΓ ;Φ ` F ×GKRelρ = JΓ ;Φ ` F KRelρ× JΓ ;Φ ` GKRelρ

JΓ ;Φ ` (µφ.λα.H)GKRelρ = (µTH,ρ)JΓ ;Φ ` GKRelρ

where TH,ρ = (T Set
H,π1ρ, T

Set
H,π2ρ, T

Rel
H,ρ)

and T Rel
H,ρ F = λR.JΓ ;φ, α ` HKRelρ[φ := F][α := R]

and T Rel
H,ρ δ = λR.JΓ ;φ, α ` HKRelidρ[φ := δ][α := idR]

Fig. 3. Relational interpretation

argue that they are well-defined and have the required properties. To do this, we
extend TH to a functor from RelEnv to [[Relk,Rel], [Relk,Rel]]. Its action on an
object ρ ∈ RelEnv is given by the higher-order functor TH,ρ whose actions on ob-
jects and morphisms are given in Figure 3. Its action on a morphism f : ρ→ ρ′

is the higher-order natural transformation TH,f : TH,ρ → TH,ρ′ whose action

on any F : [Relk,Rel] is the natural transformation TH,f F : TH,ρ F → TH,ρ′ F
whose component at R is (TH,f F)R = JΓ ;φ, α ` HKRelf [φ := idF][α := idR].

Using TH , we can define the functorial action of relational interpretation.
The action JΓ ;Φ ` F KRelf of JΓ ;Φ ` F KRel on f : ρ → ρ′ in RelEnv is given as
in Definition 2, except that all interpretations are relational interpretations and
all occurrences of T Set

H,f are replaced by TH,f . For this definition and Figure 3 to
be well-defined we need that, for every H, TH,ρ F is a relation transformer, and
TH,f F : TH,ρ F → TH,ρ′ F is a morphism of relation transformers, whenever F
is a relation transformer and f : ρ→ ρ′ is in RelEnv. This is immediate from

JΓ ;Φ ` F K = (JΓ ;Φ ` F KSet, JΓ ;Φ ` F KSet, JΓ ;Φ ` F KRel) ∈ [RelEnv, RT0] (1)

The proof is a straightforward induction on the structure of F , using an appro-
priate result from [17] to deduce ω-cocontinuity of JΓ ;Φ ` F K in each case.

We can prove by simultaneous induction that set and relational interpreta-
tions of types respect demotion of functorial variables to non-functorial ones and,
for D ∈ {Set,Rel}, JΓ ;Φ ` G[α := K]KDρ = JΓ ;Φ, α ` GKDρ[α := JΓ ;Φ ` KKDρ],

and JΓ ;Φ ` G[α := K]KDf = JΓ ;Φ, α ` GKDf [α := JΓ ;Φ ` KKDf], and JΓ ;Φ `
F [φ := H]KDρ = JΓ ;Φ, φ ` F KDρ[φ := λA. JΓ ;Φ, α ` HKDρ[α := A]], and, finally,
JΓ ;Φ ` F [φ := H]KDf = JΓ ;Φ, φ ` F KDf [φ := λA. JΓ ;Φ, α ` HKDf [α := idA]].

Parametricity for Primitive Nested Types 15

4 The Identity Extension Lemma

In most treatments of parametricity, equality relations are taken as given, either
directly as diagonal relations or perhaps via reflexive graphs. By contrast, we
give a categorical definition of graph relations for natural transformations and
construct equality relations as particular such relations. Our definitions specialize
to the usual ones for morphisms between sets and equality relations on sets.

The standard definition (x, y) ∈ 〈f〉 iff fx = y of the graph 〈f〉 of a morphism
f : A→ B in Set naturally generalizes to associate to each natural transforma-
tion between k-ary functors on Set a k-ary relation transformer. Indeed, if F,G :
Setk → Set and α : F → G is a natural transformation, then the functor 〈α〉∗ :
Relk → Rel is defined as follows. Given R1 : Rel(A1, B1), ..., Rk : Rel(Ak, Bk), let
ιRi : Ri ↪→ Ai×Bi, for i = 1, ..., k, be the inclusion of Ri as a subset of Ai×Bi,
let hA×B be the unique morphism making the left diagram below commute, and

let hR : FR → FA × GB be hA×B ◦ FιR. Further, let α∧R be the subobject
through which hR is factorized by the mono-epi factorization system in Set, as
in the right diagram below. Then α∧R : Rel(FA,GB) by construction, so the
action of 〈α〉∗ on objects can be given by 〈α〉∗(A,B,R) = (FA,GB, ια∧Rα

∧R).

Its action on morphisms is given by 〈α〉∗(β, β′) = (Fβ,Gβ
′
).

FA F (A×B) FB GB

FA×GB

Fπ1 Fπ2

h
A×B

α
B

π1 π2

FR FA×GB

α∧R

h
R

q
α∧R ι

α∧R

Lemma 1. If F,G : [Setk, Set], and if α : F → G is a natural transformation,
then the graph relation transformer for α defined by 〈α〉 = (F,G, 〈α〉∗) is in RTk.

The action of a graph relation transformer on a graph relation can be computed
explicitly: if α : F → G is a morphism in [Setk, Set] and f1 : A1 → B1, ..., fk :
Ak → Bk, then 〈α〉∗〈f〉 = 〈Gf ◦ αA〉 = 〈αB ◦ Ff〉.

To prove the IEL we also need to know that equality relation transformers
preserve equality relations. The equality relation transformer on F : [Setk, Set]
is EqF = 〈idF 〉 = (F, F, 〈idF 〉∗). The above definition then gives that, for all
A : Set, Eq∗FEqA = 〈idF 〉∗〈idA〉 = 〈F idA ◦ (idF)A〉 = 〈idFA ◦ idFA〉 = 〈idFA〉 =
EqFA. In addition, if ρ, ρ′ ∈ SetEnv and f : ρ → ρ′, then the graph relation
environment 〈f〉 is defined pointwise by 〈f〉φ = 〈fφ〉 for every φ. This entails
that π1〈f〉 = ρ and π2〈f〉 = ρ′. The equality relation environment Eqρ is defined
to be 〈idρ〉. Our IEL is thus:

Theorem 1 (IEL). If ρ ∈ SetEnv, then JΓ ;Φ ` F KRelEqρ = EqJΓ ;Φ`F KSetρ.

The IEL’s highly non-trivial proof is by induction on the structure of F . Only
the Nat, application, and fixpoint cases are non-routine. The latter two explic-
itly calculate actions of graph relation transformers as above. The fixpoint case
also uses that, for every n ∈ N, the following intermediate results can be proved
by simultaneous induction with Theorem 1: for any H, ρ, A, and subformula J

16 P. Johann, E. Ghiorzi, and D. Jeffries

JΓ ;Φ |∆,x : F ` x : F KDρ = π|∆|+1

JΓ ; ∅ |∆ ` Lαx.t : Natα F GKDρ = curry(JΓ ;α |∆, x : F ` t : GKDρ[α :=])

JΓ ;Φ |∆ ` tKs : G[α := K]KDρ = eval ◦ 〈λd. (JΓ ; ∅ |∆ ` t : Natα F GKDρ d)JΓ ;Φ`KKDρ,

JΓ ;Φ |∆ ` s : F [α := K]KDρ〉

JΓ ;Φ |∆ ` ⊥F t : F KDρ = !0JΓ ;Φ`F KDρ ◦ JΓ ;Φ | ∆ ` t : 0KDρ, where

!0JΓ ;Φ`F KDρ is the unique morphism from 0

to JΓ ;Φ ` F KDρ
JΓ ;Φ |∆ ` > : 1KDρ = !

JΓ ;Φ`∆KDρ
1 , where !

JΓ ;Φ`∆KDρ
1

is the unique morphism from JΓ ;Φ ` ∆KDρ to 1

JΓ ;Φ |∆ ` (s, t) : F ×GKDρ = JΓ ;Φ |∆ ` s : F KDρ× JΓ ;Φ |∆ ` t : GKDρ
JΓ ;Φ |∆ ` π1t : F KDρ = π1 ◦ JΓ ;Φ |∆ ` t : F ×GKDρ
JΓ ;Φ |∆ ` π2t : GKDρ = π2 ◦ JΓ ;Φ |∆ ` t : F ×GKDρ
JΓ ;Φ | ∆ ` case t of {x 7→ l; y 7→ r} : KKDρ = eval ◦ 〈curry [JΓ ;Φ |∆,x : F ` l : KKDρ,

JΓ ;Φ |∆, y : G ` r : KKDρ],

JΓ ;Φ |∆ ` t : F +GKDρ〉
JΓ ;Φ |∆ ` inL s : F +GKDρ = inL ◦ JΓ ;Φ |∆ ` s : F KDρ
JΓ ;Φ |∆ ` inR t : F +GKDρ = inR ◦ JΓ ;Φ |∆ ` t : GKDρ
JΓ ; ∅ | ∅ ` mapF,GH : Nat∅(Natβ,γF G) = λd η C. JΓ ;φ, γ ` HKDidρ[γ:=C][φ := λB.ηBC]

(Natγ H[φ :=β F]H[φ :=β G])KDρ
JΓ ; ∅ | ∅ ` inH : Natβ H[φ := (µφ.λα.H)β][α := β] = λd. inTX

H,ρ
where X is Set when

(µφ.λα.H)βKDρ D = Set and not present when D = Rel

JΓ ; ∅ | ∅ ` foldFH : Nat∅ (Natβ H[φ :=β F][α := β]F) = λd. foldTX
H,ρ

(Natβ (µφ.λα.H)β F)KDρ where X is as above

Fig. 4. Term semantics

of H, both TnH,EqρK0 EqA = (Eq(T Set
H,ρ)

nK0
)∗EqA and JΓ ;Φ, φ, α ` JKRelEqρ[φ :=

TnH,EqρK0][α := EqA] = JΓ ;Φ, φ, α ` JKRelEqρ[φ := Eq(T Set
H,ρ)

nK0
][α := EqA] hold.

The case of the proof when F and J are both µ-types makes clear that if func-
torial variables of arity greater than 0 were allowed to appear in the bodies of
µ-types, then the IEL would fail.

With the IEL in hand we can prove a Graph Lemma for our setting:

Lemma 2. If ρ, ρ′ ∈ SetEnv and f : ρ→ ρ′ then 〈JΓ ;Φ ` F KSetf〉 = JΓ ;Φ ` F KRel〈f〉.

5 Interpreting Terms

If ∆ = x1 : F1, ..., xn : Fn is a term context for Γ and Φ, define JΓ ;Φ ` ∆KD =
JΓ ;Φ ` F1KD × ... × JΓ ;Φ ` FnKD, where D is Set or Rel as appropriate. Then
every well-formed term has a set (resp., relational) interpretation as a natural
transformation from the set (resp., relational) interpretation of its term context
to that of its type. These interpretations, given in Figure 4, respect weakening,
so that JΓ ;Φ |∆,x : F ` t : GKDρ = (JΓ ;Φ |∆ ` t : GKDρ)◦π∆, where ρ ∈ SetEnv
or ρ ∈ RelEnv, and π∆ is the projection JΓ ;Φ ` ∆,x : F KD → JΓ ;Φ ` ∆KD.

The return type for the semantic fold is JΓ ;β ` F KDρ[β := B]. This interpre-
tation gives JΓ ; ∅ |∆ ` λx.t : F → GKDρ = curry(JΓ ; ∅ |∆,x : F ` t : GKDρ) and
JΓ ; ∅ |∆ ` st : GKDρ = eval ◦ 〈JΓ ; ∅ |∆ ` s : F → GKDρ, JΓ ; ∅ |∆ ` t : F KDρ〉, so

Parametricity for Primitive Nested Types 17

it specializes to the standard interpretations for System F terms. If t is closed,
i.e., if ∅; ∅ | ∅ ` t : F , then we write J` t : F KD instead of J∅; ∅ | ∅ ` t : F KD.
In addition, term interpretation respects substitution for both functorial and
non-functorial type variables, as well as term substitution. Direct calculation
reveals that interpretations of terms also satisfy JΓ ;Φ | ∆ ` (Lαx.t)KsK

D =
JΓ ;Φ | ∆ ` t[α := K][x := s]KD. Term extensionality for both types and terms —
i.e., JΓ ;Φ ` (Lαx.t)α> : F KD = JΓ ;Φ ` t : F KD and JΓ ;Φ ` (Lαx.t)αx : F KD =
JΓ ;Φ ` t : F KD — follow (when both sides of these equations are defined).

6 Free Theorems for Nested Types
6.1 Consequences of Naturality

Define, for Γ ;α ` F , the term idF to be Γ ; ∅ | ∅ ` Lαx.x : NatαF F and, for terms
Γ ; ∅ |∆ ` t : NatαF G and Γ ; ∅ |∆ ` s : NatαGH, the composition s◦ t of t and s
to be Γ ; ∅ |∆ ` Lαx.sα(tαx) : NatαF H. Then JΓ ; ∅ | ∅ ` idF : NatαF F KSetρ ∗ =
idλA.JΓ ;α`F KSetρ[α:=A] for any set environment ρ, and JΓ ; ∅ |∆ ` s ◦ t : NatαF HKSet

= JΓ ; ∅ |∆ ` s : NatαGHKSet◦JΓ ; ∅ |∆ ` t : NatαF GKSet. Also, terms of Nat type
behave as natural transformations with respect to their source and target types:

Theorem 2. If Γ ; ∅ |∆ ` s : Natα,γF G and Γ ; ∅ |∆ ` t : NatγKH, then
JΓ ; ∅ |∆ ` ((mapK,HG)∅ t) ◦ (Lγz.sK,γz) : NatγF [α := K]G[α := H]KSet

= JΓ ; ∅ |∆ ` (Lγz.sH,γz) ◦ ((mapK,HF)∅ t) : NatγF [α := K]G[α := H]KSet

Theorem 2 gives rise to an entire family of free theorems that are consequences of
naturality, and thus do not require the full power of parametricity. In particular,
we can prove that the interpretation of every mapH is a functor, and that map
is itself a higher-order functor. For example, the former property can be stated

as: if Γ ;α, γ ` H, Γ ; ∅ |∆ ` g : NatγF G, and Γ ; ∅ |∆ ` f : NatγGK, then

JΓ ; ∅ |∆ ` (mapF,KH)∅ (f ◦ g) : NatγH[α := F]H[α := K]KSet

= JΓ ; ∅ |∆ ` (mapG,KH)∅ f ◦ (mapF,GH)∅ g : NatγH[α := F]H[α := K]KSet

We can also prove the expected properties of map, in, and fold, and their inter-
pretations, e.g., uniqueness and the universal property of the interpretation of
fold, and the interpretation of in is an isomorphism.

6.2 The Abstraction Theorem

To get consequences of parametricity that are not merely consequences of nat-
urality, we prove an Abstraction Theorem (Theorem 4). As usual for such the-
orems, we prove a more general result (Theorem 3) for open terms, and recover
our Abstraction Theorem as its special case for closed terms of closed type.

Theorem 3. Every well-formed term Γ ;Φ | ∆ ` t : F induces a natural trans-
formation from JΓ ;Φ ` ∆K to JΓ ;Φ ` F K, i.e., a triple of natural transformations
(JΓ ;Φ | ∆ ` t : F KSet, JΓ ;Φ | ∆ ` t : F KSet, JΓ ;Φ | ∆ ` t : F KRel), where, for D ∈
{Set,Rel}, and for ρ ∈ SetEnv or ρ ∈ RelEnv as appropriate, JΓ ;Φ | ∆ ` t : F KD :
JΓ ;Φ ` ∆KD → JΓ ;Φ ` F KD has component JΓ ;Φ | ∆ ` t : F KDρ : JΓ ;Φ ` ∆KDρ→
JΓ ;Φ ` F KDρ at ρ. Moreover, for all ρ ∈ RelEnv, we have JΓ ;Φ | ∆ ` t : F KRelρ =
(JΓ ;Φ | ∆ ` t : F KSet(π1ρ), JΓ ;Φ | ∆ ` t : F KSet(π2ρ)).

18 P. Johann, E. Ghiorzi, and D. Jeffries

The proof is by induction on t. It requires showing that set and relational inter-
pretations of term judgments are natural transformations, and that all set in-
terpretations of terms of Nat-types satisfy the appropriate equality preservation
conditions from Figure 2. For the interesting cases of abstraction, application,
map, in, and fold terms, propagating the naturality conditions is somewhat in-
volved; the latter two especially require some delicate diagram chasing. That it
is possible provides strong evidence that our development is sensible, natural,
and at an appropriate level of abstraction.

Using Theorem 3 we can prove that our calculus admits no terms with
the type Natα1α of the polymorphic bottom, and every closed term g of type
Natααα denotes the polymorphic identity function. Moreover, an immediate con-
sequence of Theorem 3 is that if ρ ∈ RelEnv, and (a, b) ∈ JΓ ;Φ ` ∆KRelρ, then
(JΓ ;Φ |∆ ` t : F KSet(π1ρ) a , JΓ ;Φ |∆ ` t : F KSet(π2ρ) b) ∈ JΓ ;Φ ` F KRelρ. Its in-
stantiation to closed terms of closed type gives

Theorem 4 (Abstraction Theorem). (J` t : F KSet, J` t : F KSet) ∈ J` F KRel

Using Theorem 4 we can recover free theorems, such as that for the type of
the standard filter function for lists, that go beyond mere naturality, and extend
them to those nested types for which analogous functions can be defined. In
particular, we can extend short cut fusion for lists [10] to nested types, thereby
formally proving correctness of the categorically inspired theorem from [16]. As
shown there, replacing 1 with any type ∅;α ` C generalizes Theorem 5 to a free
theorem whose conclusion is foldH B ◦ G µH inH = G J∅;α ` KKSetB.

Theorem 5. If ∅;φ, α ` F , ∅;α ` K, H : [Set, Set] → [Set, Set] is defined by

H f x = J∅;φ, α ` F KSet[φ := f][α := x], and G = Jφ; ∅ | ∅ ` g : Nat∅ (Natα F (φα))
(Natα 1 (φα))KSet for some g, then for every B ∈ HJ∅;α ` KKSet → J∅;α ` KKSet
we have foldH B (G µH inH) = G J∅;α ` KKSetB.

7 Conclusion and Directions for Future Work
We have constructed a parametric model for a calculus supporting primitive
nested types, and used its Abstraction Theorem to derive free theorems for
these types. This was not possible before [17] because these types were not pre-
viously known to have well-defined interpretations in locally finitely presentable
categories (here, Set and Rel), and, to our knowledge, no term calculus for them
existed either. We naturally hope (some appropriate variant of) the construc-
tion elaborated here will generalize to more advanced data types. For exam-
ple, GADTs can be represented using left Kan extensions, and it was shown
in [17] that adding a Lan construct to a calculus such as ours preserves the
λ-cocontinuity needed for the data types it defines to have well-defined inter-
pretations in locally λ-presentable categories. (Interestingly, λ > ℵ1 is required
to interpret even common GADTs.) This suggests carrying out our model con-
struction in locally λ-presentable cartesian closed categories (lpcccs) C whose
categories of (abstract) relations, obtained by pullback as in [13], are also lpcccs
and are appropriately fibred over C. Adding term-level fixpoints further requires
our semantic categories not just to be locally λ-presentable, but to support some
kind of domain structure as well.

Parametricity for Primitive Nested Types 19

References

1. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. Cambridge
University Press (1994)

2. Atkey, R.: Relational Parametricity for Higher Kinds. In: Computer Science Logic,
pp. 46–61. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2012)

3. Bainbridge, E. S., Freyd, P. J., Scedrov, A., Scott, P. J.: Functorial Polymorphism.
Theoretical Computer Science 70, 35–64 (1990)

4. Bird, R., Meertens, L.: Nested datatypes. In: Mathematics of Program Construction,
pp. 52–67. Springer (1998)

5. Bird, R., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects of
Computing 11, 200–222 (1999)

6. Birkedal, L., Møgelberg, R. E.: Categorical models for Abadi and Plotkin’s logic for
parametricity. Mathematical Structures in Computer Science 15, 709–772 (2005)

7. Cardelli, L: Type Systems. In: CRC Handbook of Computer Science and Engineer-
ing, pp. 2208–2236. CRC Press (1984)

8. Dunphy, B., Reddy, U.: Parametric Limits. In: Logic in Computer Science, pp. 242–
252. IEEE (2004)

9. Ghani, N., Johann, P., Nordvall Forsberg, F., Orsanigo, F., Revell, T.: Bifibrational
Functorial Semantics for Parametric Polymorphism. Electronic Notes in Theoretical
Computer Science 319, 165–181. (2015)

10. Gill, A., Launchbury, J., Peyton Jones, S. L.: A short cut to deforestation. In:
Functional Programming Languages and Computer Architecture, Proceedings, pp.
223–232. Association for Computing Machinery (1993)

11. Girard, J.-Y.: Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, University of Paris (1972)

12. Hasegawa, R.: Categorical data types in parametric polymorphism. Mathematical
Structures in Computer Science 4, 71–109 (1994)

13. Jacobs, B.: Categorical Logic and Type Theory. Elsevier (1999)
14. Johann, P.: A Generalization of Short-Cut Fusion and Its Correctness Proof.

Higher-Order and Symbolic Computation 15, 273–300 (2002)
15. Johann, P., Ghani, N.: Foundations for Structured Programming with GADTs.

In: Principles of Programming Languages, pp. 297–308. Association for Computing
Machinery (2008)

16. Johann, P., Ghani, N.: Haskell Programming with Nested Types: A Principled
Approach Higher-Order and Symbolic Computation 22(2), 155–189 (2010)

17. Johann, P., Polonsky, A.: Higher-kinded data types: Syntax and Semantics. In:
Logic in Computer Science, pp. 1–13. IEEE (2019)

18. Johann, P., Polonsky, A.: Deep Induction: Induction Rules for (Truly) Nested
Types. In: Foundations of Software Science and Computation Structures, pp. 339–
358. Springer (2020)

19. Matthes, R.: Map Fusion for Nested Datatypes in Intensional Type Theory. Science
of Computer Programming 76(3), 204–224 (2011)

20. Ma, Q., Reynolds, J. C.: Types, abstraction, and parametric polymorphism, part
2. In: Mathematical Foundations of Program Semantics, pp. 1–40. Springer-Verlag
(1992)

21. Martin, C., Gibbons, J.: On the semantics of nested datatypes. Information Pro-
cessing Letters 80(5), 233–238 (2001)

22. Pitts, A.: Parametric polymorphism, recursive types, and operational equivalence.
(1998)

20 P. Johann, E. Ghiorzi, and D. Jeffries

23. Pitts, A.: Parametric polymorphism and operational equivalence. Mathematical
Structures in Computer Science 10, 321–359 (2000)

24. Reynolds, J. C.: Types, abstraction, and parametric polymorphism. Information
Processing 83(1), 513–523 (1983)

25. Reynolds, J. C.: Polymorphism is not set-theoretic. Semantics of Data Types, 145–
156 (1984)

26. Robinson, E., Rosolini, G.: Reflexive graphs and parametric polymorphism. In:
Logic in Computer Science, pp. 364–371. IEEE (1994)

27. Wadler, P.: Theorems for free!. In: Functional Programming Languages and Com-
puter Architecture, Proceedings, pp. 347–359. Association for Computing Machinery
(1989)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Parametricity for Primitive Nested Types*-0.2in

